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Optimising what?

• Time vs. space?

• Latency vs. throughput?

• Average vs. worst case?

• Performance vs. efficiency?

• One vs. few vs. many threads?


• Development time?

• Number of unit tests?

• Maintainability of code?



What is “optimisation”?
1st attempt

Making code faster!



Why do we optimise?

• Efficient code is green code

• saves energy, money and resources


• Fast code makes for better user experience

• higher user satisfaction, more sales


• Some code has performance requirements

• embedded and real-time systems, …


• It’s fun and gratifying to make code faster

• which is why we might have a tendency to optimise prematurely



So where’s the “evil”?



“Evil” optimisation side-effects

• Adding code and complexity

• Making code more error prone

• Getting lost in micro optimisations

• Making things slower instead of faster

• Breaking the functionality in corner cases

• Making the code less flexible and malleable

• Wasting time optimising in wrong places

• Making the code harder to read and understand

• Requiring more (unit) tests to verify correctness



What is the “evil”?

• Adding code and complexity


• Managing complexity is a key challenge of software development

• Layered models

• Divide and conquer

• Functions and classes

• Modules and interfaces

• Other abstraction mechanisms

• Less is more (YAGNI, DRY, minimalistic code)



Big picture:  taoCONFIG  vs.  PEGTL

• taoCONFIG reads configuration files for applications


• Configuration files are small and read once


• Optimising taoCONFIG is not our priority


• PEGTL parses data according to a user’s grammar


• Some users parse a lot of data and/or a lot of times


• PEGTL performance is always on our minds


• But we are not implementing packrat parsing!


• Takeaway: Look at the big picture before optimising!



Hearsay based optimisation: O(n)

• PEGTL recursive-descent approach is O(n^2) or worse


• “Packrat parsing (with memoisation) is sooo much better with its O(n)”


• Yes, packrat parsing has better worst-case complexity, but:


• A much higher constant factor (overhead), and:


• has more code and uses more memory at runtime, and:


• how many real-world grammars hit the worst case anyhow?


• Nobody has convinced us yet that the PEGTL would benefit from packrat 

• Takeaway: Theoretical advantages don’t always hold in practice!



Hearsay based optimisation: virtual

• “Virtual functions are slow”


• Yes, they are slower than plain functions, but:


• Are they slower than the alternatives?


• How complicated are these alternatives?


• Runtime polymorphism has some cost!


• Virtual functions should be used where appropriate,


• and [their overhead] avoided where not necessary


• Takeaway: Compare and choose wisely!



Statistics guided optimisation

• Needed to extend app to keep track of certain things


• Question was which container to use for these things


• Use cases were discussed and access patterns analysed


• Then we discovered the number of these things at any given time


• Nearly always either 0 and 1


• In other words it doesn’t matter which data structure is used


• Takeaway: Know what you are optimising for!



Library vs. hand rolled:  taoJSON

• taoJSON value class holds different types


• Initially based on union & enum & switch statements (fast!)


• Later changed to std::variant (slow?)


• That’s the opposite of optimising, but:


• Pages of low-level code were removed (great!)


• Performance did not suffer noticeably (good!)


• Takeaway: The standard library is often very good and/or good enough!



Hand optimised:  FLC video player

• Once upon a time I had an FLC video file on my Amiga


• Found a player written in assembly 

• Hand-optimised read-and-decode loop (fast but … assembly!)


• But the host adapter can DMA from HDD to RAM…


• Wrote a multi-threaded player in C


• Use CPU to decode during asynchronous DMA (faster and … easier!)


• Takeaway: Restructuring on high-level beats low-level optimisations!



Just doing our jobs: “Good code”

• Writing appropriate / elegant / minimalistic code


• std::unique_ptr vs. std::shared_ptr


• std::vector vs. std::list vs. std::deque vs. std::set


• passing by value or by reference


• Reasoning about these choices is reasoning about structure and design!


• And these choices convey information to the reader!


• Takeaway: Not everything that optimises is an optimisation!



Just doing our jobs!

• Everything that simplifies code or reduces complexity

• Even if it makes the code faster as side effect


• Everything that makes code more readable and maintainable

• Even if it makes the code faster as side effect


• Making the structure of the code match the structure of the problem

• Frequently produces good or at least good enough performance


• Most things that make code faster without increasing complexity

• Choosing the most efficient alternative without drawbacks



Complexity vs. optimisation?



What is “optimisation”?
2nd attempt

Making code faster…
…while increasing complexity!



What about “premature”?



Premature optimisation checklist
1st attempt

• Am I optimising the right places?

• Probably not, the profiler is your friend!

• Is it even worth it, is the code run often enough?


• Will my change improve performance?

• Benchmark a prototype or mockup or something!


• Am I optimising code that will survive?

• Is the feature needed in the first place?

• Will higher-level improvements eliminate the code?


• Will my unit tests catch bugs introduced while optimising?

• Am I keeping in mind that the most efficient code is … no code?



Recommended approach

• First create the baseline

• Correct code

• Nice, simple, minimalistic, elegant, … code

• This is usually quite fast/efficient,

• perhaps even fast/efficient enough


• Then think about what might need optimising

• And use the profiler and the questions to be sure

• Low hanging fruit with local impact can be fair game



What is “premature optimisation”?

Optimising code…
…before the baseline! 

baseline = correct, clean, elegant, minimalistic code 

…before doing the checklist! 
checklist = all the questions from two slides ago



Thank you!
Colin Hirsch   —   mail@cohi.at
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