
Dr. Colin Hirsch

What is “Optimisation”? 
When is it “Premature”?
Version 1.1.0

Dr. Colin Hirsch

What is “Premature Optimisation”? 
Why is it the “Root of all Evil”?
Version 1.1.0

Donald Knuth

"We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of
all evil. Yet we should not pass up our opportunities in
that critical 3%"

Donald Knuth

"We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of
all evil. Yet we should not pass up our opportunities in
that critical 3%"

Optimising what?

• Time vs. space?

• Latency vs. throughput?

• Average vs. worst case?

• Performance vs. efficiency?

• One vs. few vs. many threads?

• Development time?

• Number of unit tests?

• Maintainability of code?

What is “optimisation”?
1st attempt

Making code faster!

Why do we optimise?

• Efficient code is green code

• saves energy, money and resources

• Fast code makes for better user experience

• higher user satisfaction, more sales

• Some code has performance requirements

• embedded and real-time systems, …

• It’s fun and gratifying to make code faster

• which is why we might have a tendency to optimise prematurely

So where’s the “evil”?

“Evil” optimisation side-effects

• Adding code and complexity

• Making code more error prone

• Getting lost in micro optimisations

• Making things slower instead of faster

• Breaking the functionality in corner cases

• Making the code less flexible and malleable

• Wasting time optimising in wrong places

• Making the code harder to read and understand

• Requiring more (unit) tests to verify correctness

What is the “evil”?

• Adding code and complexity

• Managing complexity is a key challenge of software development

• Layered models

• Divide and conquer

• Functions and classes

• Modules and interfaces

• Other abstraction mechanisms

• Less is more (YAGNI, DRY, minimalistic code)

Big picture: taoCONFIG vs. PEGTL

• taoCONFIG reads configuration files for applications

• Configuration files are small and read once

• Optimising taoCONFIG is not our priority

• PEGTL parses data according to a user’s grammar

• Some users parse a lot of data and/or a lot of times

• PEGTL performance is always on our minds

• But we are not implementing packrat parsing!

• Takeaway: Look at the big picture before optimising!

Hearsay based optimisation: O(n)

• PEGTL recursive-descent approach is O(n^2) or worse

• “Packrat parsing (with memoisation) is sooo much better with its O(n)”

• Yes, packrat parsing has better worst-case complexity, but:

• A much higher constant factor (overhead), and:

• has more code and uses more memory at runtime, and:

• how many real-world grammars hit the worst case anyhow?

• Nobody has convinced us yet that the PEGTL would benefit from packrat

• Takeaway: Theoretical advantages don’t always hold in practice!

Hearsay based optimisation: virtual

• “Virtual functions are slow”

• Yes, they are slower than plain functions, but:

• Are they slower than the alternatives?

• How complicated are these alternatives?

• Runtime polymorphism has some cost!

• Virtual functions should be used where appropriate,

• and [their overhead] avoided where not necessary

• Takeaway: Compare and choose wisely!

Statistics guided optimisation

• Needed to extend app to keep track of certain things

• Question was which container to use for these things

• Use cases were discussed and access patterns analysed

• Then we discovered the number of these things at any given time

• Nearly always either 0 and 1

• In other words it doesn’t matter which data structure is used

• Takeaway: Know what you are optimising for!

Library vs. hand rolled: taoJSON

• taoJSON value class holds different types

• Initially based on union & enum & switch statements (fast!)

• Later changed to std::variant (slow?)

• That’s the opposite of optimising, but:

• Pages of low-level code were removed (great!)

• Performance did not suffer noticeably (good!)

• Takeaway: The standard library is often very good and/or good enough!

Hand optimised: FLC video player

• Once upon a time I had an FLC video file on my Amiga

• Found a player written in assembly

• Hand-optimised read-and-decode loop (fast but … assembly!)

• But the host adapter can DMA from HDD to RAM…

• Wrote a multi-threaded player in C

• Use CPU to decode during asynchronous DMA (faster and … easier!)

• Takeaway: Restructuring on high-level beats low-level optimisations!

Just doing our jobs: “Good code”

• Writing appropriate / elegant / minimalistic code

• std::unique_ptr vs. std::shared_ptr

• std::vector vs. std::list vs. std::deque vs. std::set

• passing by value or by reference

• Reasoning about these choices is reasoning about structure and design!

• And these choices convey information to the reader!

• Takeaway: Not everything that optimises is an optimisation!

Just doing our jobs!

• Everything that simplifies code or reduces complexity

• Even if it makes the code faster as side effect

• Everything that makes code more readable and maintainable

• Even if it makes the code faster as side effect

• Making the structure of the code match the structure of the problem

• Frequently produces good or at least good enough performance

• Most things that make code faster without increasing complexity

• Choosing the most efficient alternative without drawbacks

Complexity vs. optimisation?

What is “optimisation”?
2nd attempt

Making code faster…
…while increasing complexity!

What about “premature”?

Premature optimisation checklist
1st attempt

• Am I optimising the right places?

• Probably not, the profiler is your friend!

• Is it even worth it, is the code run often enough?

• Will my change improve performance?

• Benchmark a prototype or mockup or something!

• Am I optimising code that will survive?

• Is the feature needed in the first place?

• Will higher-level improvements eliminate the code?

• Will my unit tests catch bugs introduced while optimising?

• Am I keeping in mind that the most efficient code is … no code?

Recommended approach

• First create the baseline

• Correct code

• Nice, simple, minimalistic, elegant, … code

• This is usually quite fast/efficient,

• perhaps even fast/efficient enough

• Then think about what might need optimising

• And use the profiler and the questions to be sure

• Low hanging fruit with local impact can be fair game

What is “premature optimisation”?

Optimising code…
…before the baseline!

baseline = correct, clean, elegant, minimalistic code

…before doing the checklist!
checklist = all the questions from two slides ago

Thank you!
Colin Hirsch — mail@cohi.at

mailto:mail@cohi.at

