
Daniel Frey, 2022-07-13

{"initializer", "lists", "unleashed"}

Today’s Menu

• List-Initialization

• Fun Facts!

• Effects of List-Initialization

• std::initializer_list

• Nesting and Recursion

• I Like to Move It, Move It!

List-Initialization

List-Initialization

• https://en.cppreference.com/w/cpp/language/list_initialization

• Introduced in C++11

• Initialises an object from a braced-init-list (C++ grammar rule)

• { arg1, arg2, … } is a braced-init-list

• Two basic syntax forms:

• Direct-List-Initialization

• Copy-List-Initialization

https://en.cppreference.com/w/cpp/language/list_initialization

Direct-List-Initialization

T object { arg1, arg2, … };
T { arg1, arg2, … }
new T { arg1, arg2, … }
Class { T member { arg1, arg2, … }; };
Class::Class() : member{ arg1, arg2, … } { …

Both explicit and non-explicit constructors are considered.

Copy-List-Initialization

T object = { arg1, arg2, … };
function({ arg1, arg2, … })
return { arg1, arg2, … };
object[{ arg1, arg2, … }]
object = { arg1, arg2, … }
U({ arg1, arg2, … })
Class { T member = { arg1, arg2, … }; };

Both explicit and non-explicit constructors are considered, 
but only non-explicit constructors may be called.

Fun Facts!

Not an Expression!?

• A braced-init-list is not an expression and therefore has no type, e.g.

• decltype({1,2}) is ill-formed

• Having no type implies that template type deduction cannot deduce a type that
matches a braced-init-list,

• so given the declaration template<typename T> void f(T); the
expression f({1,2}) is ill-formed

• Special rules for type deduction using auto, as well as special rules for overload
resolution apply, see https://cppreference.com

https://cppreference.com

Sequenced Before

• Every initializer clause is “sequenced before” any initializer clause that follows it
in the braced-init-list

Narrowing Conversions

List-Initialization limits the allowed implicit conversions by prohibiting the following:

• conversion from floating-point type to integer type

• conversion from long double to double or float and conversion from
double to float, except where the source is a constant expression and
overflow does not occur

• conversion from an integer type to a floating-point type, except where the source
is a constant expression whose value can be stored exactly in the target type

Narrowing Conversions
(continued)

List-Initialization limits the allowed implicit conversions by prohibiting the following:

• conversion from integer or unscoped enumeration type to integer type that
cannot represent all values of the original, except where source is a constant
expression whose value can be stored exactly in the target type

• conversion from pointer type or pointer-to-member type to bool

Effects of List-Initialization

Effects of List-Initialization

The effects of list-initialization of an object of type T are:

• If T is an aggregate type and the braced-init-list has a single element of the same
or derived type, the object is initialised from that element

• Otherwise, if T is a character array and the braced-init-list has a single element
that is an appropriately-typed string literal, the array is initialised from that string
as usual

• Otherwise, if T is an aggregate type, aggregate initialisation is performed

• Otherwise, if the braced-init-list is empty and T is a class type with a default
constructor, value-initialisation is performed

Effects of List-Initialization
(continued)

• Otherwise, if T is a specialisation of std::initializer_list, the T object is
direct-initialized or copy-initialized, depending on context, from the braced-init-list

• Otherwise, the constructors of T are considered in two phases:

• All constructors that take a std::initializer_list as the only argument,
or as the first argument and all other arguments have default values, are
examined, and matched by overload resolution against the first argument

• If the previous stage does not produce a match, all constructors of T participate
in overload resolution against the set of arguments that consist of the elements
of the braced-init-list, with the restriction that only non-narrowing conversions
are allowed

Effects of List-Initialization
(continued)

• Otherwise, well… you get the idea. This is C++, we don’t do easy ;)

• See https://en.cppreference.com/w/cpp/language/list_initialization

• Takeaway: Take arguments of type std::initializer_list if you want to
handle braced-init-list yourself

https://en.cppreference.com/w/cpp/language/list_initialization

std::initializer_list

std::initializer_list

• https://en.cppreference.com/w/cpp/utility/initializer_list

• template<typename T> class std::initializer_list;

• An object of std::initializer_list<T> is a lightweight proxy object that
provides access to an array of objects of type const T

• The underlying array is a temporary array

• The underlying array may be allocated in read-only memory

• Copying a std::initializer_list does not copy the underlying objects

https://en.cppreference.com/w/cpp/utility/initializer_list

std::initializer_list

A std::initializer_list object is automatically constructed when:

• a braced-init-list is used to list-initialise an object, where the corresponding
constructor accepts an std::initializer_list parameter

• a braced-init-list is used as the right operand of assignment or as a function call
argument, and the corresponding assignment operator/function accepts an
std::initializer_list parameter

• a braced-init-list is bound to auto, including in a range-based for loop: 
for(int x : {1,2,3}) { … }

Nesting and Recursion

Nesting

std::vector< std::vector< std::string > > v = {
 { "first", "vector" }, // two elements
 { "second", std::string(), "vector"s, {} }, // four
 {}, // zero
 { { "blablabla", 3 }, "wait, what?" } // two
};

JSON basics

As seen in your favourite JSON library:

jvalue v1 = true;
jvalue v2 = 42;
jvalue v3 = "string";

JSON basics

struct jvalue
{
 using variant_t = std::variant<bool,int,std::string,…>;
 variant_t value;

 jvalue(const jvalue&) = default;
 jvalue(jvalue&&) = default;

 template<typename T> jvalue(T&& v)
 : value(std::forward<T>(v))
 {}
};

JSON objects

jvalue v = {
 { "first", "key/value pair" },
 { "second", 42 },
 { "third", true }
};

Recursion

jvalue v = {
 { "first", "key/value pair" },
 { "second", 42 },
 { "third", true },
 { "fourth", // nested jvalue
 {
 { "nested1", "foo" },
 { "nested2", false },
 { "nested3", 1701 }
 }
 }
};

Recursion

struct jvalue
{
 using jobject_t = std::map<std::string, jvalue>;
 using jarray_t = std::vector<jvalue>;

 using variant_t =
 std::variant<bool,int,std::string,…,jarray_t,jobject_t>;

 jvalue(std::initializer_list<jobject_t::value_type> il)
 : value(il)
 {}
};

Recursion

jvalue jarray(std::initializer_list<jvalue> il)
{
 return il;
}

jvalue v = {
 { "first", "key/value pair" },
 { "second", jarray({42, false, "Hello"}) },
 { "third", true }
};

I Like to Move It, Move It!

Move It!

struct jmember
{
 mutable std::string key;
 mutable jvalue value;
};

Move It!

struct jvalue
{
 template<typename T> jvalue(T&& v);

 jvalue(std::initializer_list<jmember>&& il); // move it!
 jvalue(const std::initializer_list<jmember>& il); // copy

 jvalue(std::initializer_list<jmember>& il)
 : jvalue(const_cast<…>(il))
 {}
};

Move It!

jvalue::jvalue(const std::initializer_list<jmember>& il)
{
 jobject_t obj;
 for(const auto& [k,v] : il) {
 obj.emplace(k,v);
 }
 value = std::move(obj);
}

Move It!

jvalue::jvalue(std::initializer_list<jmember>&& il)
{
 jobject_t obj;
 for(const auto& [k,v] : il) {
 obj.emplace(std::move(k), std::move(v)); // move it!
 }
 value = std::move(obj);
}

Thank you!

Questions?

