Aachen C++ Meetup

C++ User Gruppe Aachen

To Move or Not to Move
an interactive analysis

Amir Kirsh

https://www.meetup.com/c-user-gruppe-aachen/
https://cpp-aachen.github.io/

About me

Lecturer

Academic College of Tel-Aviv-Yaffo
Tel-Aviv University

Visiting lecturer @ Stony Brook University

Developer Advocate at

7 INCReDIBUILD

Member of the Israeli ISO C++ NB

Co-Organizer of the CoreCpp
conference and meetup group

To Move or Not to Move @ Amir Kirsh 2

7 INCReDIBUILD

Suffering from slow Clbipeline?

It’s not just waste of time .

It affects your dev cycles
and productivity

We also accelerate Yocto builds!

Our recent talks at Yocto Project Summit:

https://bit.ly/YPS-2022_1B_bitbake

https://bit.ly/YPS-2022 IB Cache

? INCReDIBUILD YOCtO i

PROJECT

Incredibuild + Yocto:

https://www.incredibuild.com/blog/announcing-incredibuild-support-for-yocto
https://www.incredibuild.com/lp/yocto

To Move or Not to Move @ Amir Kirsh

https://bit.ly/YPS-2022_IB_bitbake
https://bit.ly/YPS-2022_IB_Cache
https://www.incredibuild.com/blog/announcing-incredibuild-support-for-yocto
https://www.incredibuild.com/lp/yocto

Incredibuild for Automotive

Relevant Sub-Sectors:

* Infotainment

* Instrument cluster

* Heads-up-display (HUD)

» Telematics/connected car

» Advanced driver assistance systems (ADAS)
* Functional safety and autonomous driving

Jaguar Land Rover, Nissan, Toyota, DENSO Corporation, Fujitsu,
HARMAN, NVIDIA, Renesas, Samsung

Relevant Linux OS’s / distribution collaborations:

Yocto, QNX, AOSP, Bazel, AGL
Y 4

®
AUTOMCLITIVE
GRADE LINUX

https://www.automotivelinux.org/about/members/

The motivation for Move Semantics

Godzilla gl = factory.createFrighteningGodzilla();
Godzilla g2;

g2 = factory.createSpookyGodzilla();
list<Godzilla> godzillas;
godzillas.push_back(Godzilla("sweety"));

To Move or Not to Move @ Amir Kirsh

What is being called?

To Move or Not to Move @ Amir Kirsh

What is being called?

A::A(std::string a_name): name(a_name) {}

B::B(std::string&& b_name): name(b_name) {}

A copy in A, move in B C copy in both

B copyin B, move in A move in both

To Move or Not to Move @ Amir Kirsh

What is being called?

A::A(std::string a_name): name(a_name) {}

B::B(std::string&& b_name): name(b_name) {}

A copy in A, move in B [C copy in both

B copyin B, move in A D move in both

To Move or Not to Move @ Amir Kirsh

The need for std::move

A::A(std::string a_name): name(std::move(a_name)) {}

B::B(std::string&& b_name): name(std::move(b_name)) {}

To Move or Not to Move @ Amir Kirsh

10

What is being called?

To Move or Not to Move @ Amir Kirsh

11

What is being called?

[A::A(const std::string& a _name): name(std::move(a_name)) {}]

// note that above is bad, you should not move here

// but what would happen if you accidentally do?

A move C the code would not compile

B copy it's compiler dependent

To Move or Not to Move @ Amir Kirsh

12

What is being called?

[A::A(const std::string& a _name): name(std::move(a_name)) {}]

// note that above is bad, you should not move here

// but what would happen if you accidentally do?

A move C the code would not compile

[B copy] D it's compiler dependent

To Move or Not to Move @ Amir Kirsh

13

reference type overload resolution

A B C D**
Who is sent =>| Ivalue const | rvalue | const

Candidate Functions Ivalue rvalue
1 f(X& x) 1) v
2 [f(const X& x) (2) v (4 3) v (2) v
3 f(X&& x) Mv
4* [f(const X&& x) Qv | (v
* Row 4 is rare - rationale in handling rvalue reference is to “steal” it.

Table source:

C++ - How does the compiler decide
between overloaded functions with
reference types as parameter? -
Stack Overflow

But you cannot steal if it is a const rvalue reference, so usually you will not implement row 4.
Still, possible use case: Do rvalue references to const have any use? - Stack Overflow

* Column D is also rare and mostly irrelevant - if it happens, would be usually handled by

row 2 and not by row 4 (-- as row 4 is most probably not implemented).

To Move or Not to Move @ Amir Kirsh

14

https://stackoverflow.com/questions/4938875/do-rvalue-references-to-const-have-any-use
https://stackoverflow.com/questions/47734382/c-how-does-the-compiler-decide-between-overloaded-functions-with-reference-t#47736813
https://stackoverflow.com/questions/47734382/c-how-does-the-compiler-decide-between-overloaded-functions-with-reference-t#47736813
https://stackoverflow.com/questions/47734382/c-how-does-the-compiler-decide-between-overloaded-functions-with-reference-t#47736813
https://stackoverflow.com/questions/47734382/c-how-does-the-compiler-decide-between-overloaded-functions-with-reference-t#47736813

Is it valid to std::move an Ivalue reference?

template<class T>
void foo(T& a, T& b) {
T temp = std::move(a);

// do some more stuff

To Move or Not to Move @ Amir Kirsh

15

Is it valid to std::move an Ivalue reference?

template<class T>
void foo(T& a, T& b) {
T temp = std::move(a);

// do some more stuff

A it will not compile C it wil compile but it's undefined behavior

B compiles with a warning yes, it can be legit in some cases

To Move or Not to Move @ Amir Kirsh 16

Is it valid to std::move an Ivalue reference?

template<class T>
void foo(T& a, T& b) {
T temp = std::move(a);

// do some more stuff

A it will not compile C it wil compile but it's undefined behavior

B compiles with a warning [yes, it can be legit in some cases]

To Move or Not to Move @ Amir Kirsh 17

Is it valid to std::move an Ivalue reference? YES

template<class T>
void swap(T& lhv, T& rhv) {
T temp = std::move(lhv); // we steal from lvalue
lhv = std::move(rhv); // because we override it here

rhv = std::move(temp);

To Move or Not to Move @ Amir Kirsh

18

Be cautious with passing by value

To Move or Not to Move @ Amir Kirsh

19

Be cautious with passing by value

std: :set<string> long strings;

[void store(string s) [{ <i:::]\NecopyevenW
long_strings.insert(std::move(s)); not needed

}

the rule of “if you need to copy pass by value” needs great care

See: https://stackoverflow.com/questions/10231349/are-the-days-of-passing-const-stdstring-as-a-parameter-over

Related:
The copy and swap idiom is elegant (maybe) but inefficient...

http://accu.org/content/conf2014/Howard Hinnant Accu 2014.pdf

https://stackoverflow.com/questions/24014130/should-the-copy-and-swap-idiom-become-the-copy-and-move-idiom-in-c11/24018053#24018053

To Move or Not to Move @ Amir Kirsh

20

https://stackoverflow.com/questions/10231349/are-the-days-of-passing-const-stdstring-as-a-parameter-over
http://accu.org/content/conf2014/Howard_Hinnant_Accu_2014.pdf
https://stackoverflow.com/questions/24014130/should-the-copy-and-swap-idiom-become-the-copy-and-move-idiom-in-c11/24018053#24018053

Alternatives

template<typename T> requires

(void store(const string& s) |{ . .
std::convertible_to<T, std::string>

long strings.insert(s);
} OR |Vvoid store(T&& s)|{
long strings
.insert(std: :forward<T>(s));

[void store(string&& s)]{
Iong strings.insert(std::move(s));

}

To Move or Not to Move @ Amir Kirsh 21

Alternatives

Inserting existing item into std::set via our store function

byval const ref const ref + rval
lvalue copy --- ---
rvalue move copy move

GCC (with libstdc++) and Clang (with libc++) both with -O3
https://godbolt.org/z/954KeM

To Move or Not to Move @ Amir Kirsh

forwarding ref

move

22

https://godbolt.org/z/954KeM

Alternatives

Inserting existing item into std::

byval
lvalue copy
rvalue move

GCC (with libstdc++) and Clang (with libc++) both with -O3

https://godbolt.org/z/954KeM

To Move or Not to Move @ Amir Kirsh

set via our store function

const ref

copy

-~

const ref + rval

move

forwarding ref

move

~

]

better

23

https://godbolt.org/z/954KeM

What’s wrong here?

friend MyString&& operator+(const MyString& sl1, const MyString& s2) {
MyString concat /* = do concatenation*/;

return std::move(concat);

To Move or Not to Move @ Amir Kirsh

24

What’s wrong here?

friend MyString&& operator+(const MyString& sl1, const MyString& s2) {
MyString concat /* = do concatenation*/;

return std::move(concat);

A nothing, code is fine C aperformance issue

B returning a dangling ref code doesn’t compile

To Move or Not to Move @ Amir Kirsh

25

Code: https://godbolt.org/z/856PTjKdd
See also, Stack Overflow:

Wh at,s Wrong here? Is there any case where a return of a

RValue Reference (&&) is useful?

friend MyString&& operator+(const MyString& sl1, const MyString& s2) {
MyString concat /* = do concatenation*/;

return std::move(concat);

A nothing, code is fine C aperformance issue

[B returning a dangling ref] D code doesn’t compile

To Move or Not to Move @ Amir Kirsh 26

https://godbolt.org/z/856PTjKdd
https://stackoverflow.com/questions/5770253/is-there-any-case-where-a-return-of-a-rvalue-reference-is-useful
https://stackoverflow.com/questions/5770253/is-there-any-case-where-a-return-of-a-rvalue-reference-is-useful

What’s wrong here?

friend MyString operator+(const MyString& sl1, const MyString& s2) {
MyString concat /* = do concatenation*/;

return std::move(concat);

To Move or Not to Move @ Amir Kirsh

27

What’s wrong here?

friend MyString operator+(const MyString& sl1, const MyString& s2) {
MyString concat /* = do concatenation*/;

return std::move(concat);

A nothing, code is fine C aperformance issue

B returning a dangling ref code doesn’t compile

To Move or Not to Move @ Amir Kirsh

28

Code:
https://godbolt.org/z/WxzExM5ef

Wh at,s WwWron g here? See also, Stack Overflow:

C++11 rvalues and move
semantics - return statement

friend MyString operator+(const MyString& sl1, const MyString& s2) {
MyString concat /* = do concatenation*/;

return std::move(concat);

A nothing, code is fine [C aperformance issue]

B returning a dangling ref D code doesn’t compile

To Move or Not to Move @ Amir Kirsh 29

https://godbolt.org/z/WxzExM5ef
https://stackoverflow.com/questions/4986673/c11-rvalues-and-move-semantics-confusion-return-statement
https://stackoverflow.com/questions/4986673/c11-rvalues-and-move-semantics-confusion-return-statement

The proper way

friend MyString operator+(const MyString& sl1, const MyString& s2) {
MyString concat /* = do concatenation*/;

return concat; // implicit move on return of a local variable

To Move or Not to Move @ Amir Kirsh

30

What’s wrong here?

template<typename T>
class Stack {

std: :vector<T> vec;
public:

void push(T&& t) {
vec.push_back(std: :forward<T>(t));

/] ...
s

To Move or Not to Move @ Amir Kirsh

31

A T8&&in pushis NOT
What’s wrong here? a forwarding reference,

thus compilation error
template<typename T> B

class Stack {

std: :vector<T> vec;

T&& in push is NOT
a forwarding reference,
thus we support only
public: push of rvalues

void push(T&& t) {

vec.push_back(std: :forward<T>(t));

push may add to the
vector a dangling ref

/] ... push may inefficiently
}; copy when it can move
an item into the vector

To Move or Not to Move @ Amir Kirsh 32

A T8&&in pushis NOT
What’s wrong here? a forwarding reference,

thus compilation error

template<typename T> (’Ea
class Stack {

std: :vector<T> vec;

T&& in push is NOT A
a forwarding reference,
thus we support only
public: \ push of rvalues)
void push(T&& t) {

vec.push_back(std: :forward<T>(t));

push may add to the
vector a dangling ref

/] ... push may inefficiently
}; copy when it can move
an item into the vector

To Move or Not to Move @ Amir Kirsh 33

The proper way - option 1

template<typename T>
class Stack {

std: :vector<T> vec;
public:

[void push(T&& t) {
vec.push_back(std: :move(t));

}
void push(const T& t) {

vec.push back(t);

-

/] ...
}s

To Move or Not to Move @ Amir Kirsh

34

The proper way - option 2

template<typename T>
class Stack {
std: :vector<T> vec;
public:
/’template<typename U> requires std::convertible to<U, T>)
void push(U&& u) {
vec.push back(std: :forward<U>(u));

}

- J

/] ...
}s

To Move or Not to Move @ Amir Kirsh

35

What’s wrong here?

template<typename T>
class Stack {

std: :vector<T> vec;
public:

/] ...

" T pop() {
T& e = vec.back();
vec.pop_back();
return std::move(e);

s

To Move or Not to Move @ Amir Kirsh

36

What’s wrong here?

template<typename T>
class Stack {

std: :vector<T> vec;
public:

/] ..

A pop returns a

B

" T pop() {
T& e = vec.back();
vec.pop_back();
return std::move(e);

s

To Move or Not to Move @ Amir Kirsh

dangling reference

pop moves from a
dangling reference

(code would be OK without
the call to std: :move)

pop has UB: “moving out”
from a vector is impossible

the reference e is being
invalidated once we call
pop_back

37

What’s wrong here?

template<typename T>
class Stack {

std: :vector<T> vec;
public:

/] ..

" T pop() {
T& e = vec.back();
vec.pop_back(); // e’s dtor called
return std::move(e);

pop returns a
dangling reference

pop moves from a
dangling reference

(code would be OK without

the call to std: :move)

pop has UB: “moving out”

from a vector is impossible

s

To Move or Not to Move @ Amir Kirsh

the reference e is being
invalidated once we call
pop_back

38

The proper way

template<typename T>
class Stack {

std: :vector<T> vec;
public:

‘T pop() {
T e = std::move(vec.back());
vec.pop_back();
return e;

)

Code:
http://coliru.stacked-crooked.com/a/b339af287c876ec4

//
s

To Move or Not to Move @ Amir Kirsh

See also - Stack Overflow:

- lterator invalidation rules for C++ containers

- pop_back() return value?

- How to store a value obtained from a vector “pop_back()’

in C++7?
39

http://coliru.stacked-crooked.com/a/b339af287c876ec4
https://stackoverflow.com/questions/6438086/iterator-invalidation-rules
https://stackoverflow.com/questions/12600330/pop-back-return-value
https://stackoverflow.com/questions/40500821/how-to-store-a-value-obtained-from-a-vector-pop-back-in-c
https://stackoverflow.com/questions/40500821/how-to-store-a-value-obtained-from-a-vector-pop-back-in-c

A side note

To Move or Not to Move @ Amir Kirsh

40

Implementing move forgetting noexcept

To Move or Not to Move @ Amir Kirsh

41

Implementing move forgetting noexcept

vector’s push_back implementation is allowed to use move ctor only if it is

declared as noexcept: A(Ass a) noexcept {
// code

}

Why? to avoid possible bad scenario of exception during move
- we call push_back to add a Godzilla to vector<Godzilla>
- capacity of vector is exhausted, so vector capacity shall be enlarged
- new bigger allocation is made, old Godzillas shall be moved
- while moving Godzilla at index N an exception is thrown
- we have now two broken vectors and cannot rollback

Read: https://en.cppreference.com/w/cpp/utility/move if noexcept

https://stackoverflow.com/questions/28627348/

noexcept-and-copy-move-constructors

To Move or Not to Move @ Amir Kirsh

42

https://en.cppreference.com/w/cpp/utility/move_if_noexcept
https://stackoverflow.com/questions/28627348/noexcept-and-copy-move-constructors
https://stackoverflow.com/questions/28627348/noexcept-and-copy-move-constructors

Implementing move forgetting noexcept

Don’t believe there is a difference?

// code // code

A(A&& a) noexcept { (:::l A(A&& a) /* oops forgot */ {
b }

To Move or Not to Move @ Amir Kirsh

43

Implementing move forgetting noexcept

Don’t believe there is a difference?

A(A&& a) noexcept { (:::l A(A&& a) /* oops forgot */ {

// code // code

} }

in A's empty ctor in A's empty ctor
in A's move ctor in A's copy ctor
in A's move ctor in A's copy ctor
in A's move ctor in A's copy ctor
in A's move ctor in A's copy ctor
in A's move ctor in A's copy ctor
in A's move ctor in A's copy ctor
in A's move ctor in A's copy ctor
in A's move ctor in A's copy ctor

http://coliru.stacked-crooked.com/a/15a89b45b0dcfedd

To Move or Not to Move @ Amir Kirsh

http://coliru.stacked-crooked.com/a/15a89b45b0dcfedd

Last One

To Move or Not to Move @ Amir Kirsh

45

Last One

Are you ready?

To Move or Not to Move @ Amir Kirsh

46

What’s wrong here?

template<typename T>
T my max(T&& a, T&& b) {
return std::forward<T>(b) < std::forward<T>(a) ?
std::forward<T>(a) : std::forward<T>(b);

Code: https://godbolt.org/z/rx4xqg7Ksx

To Move or Not to Move @ Amir Kirsh

47

https://godbolt.org/z/rx4xq7Ksx

Summary

To Move or Not to Move @ Amir Kirsh

48

Summary (1)

Don’t std::move anything
without thinking

Don’t std::move local variables on return
Don’'t move something that is still in use by you or others

Don’t move something twice

To Move or Not to Move @ Amir Kirsh

49

Summary (2)

Don’t waive std::move
when needed

You should std::move an rvalue that has a name, and you know you
won’t be using it anymore and thus can move from it

You can std::move lvalues, if the moved value would not be used

To Move or Not to Move @ Amir Kirsh

50

A bonus slide

auto max = strs[0];

// we put into the lambda intentionally (for this example) something that cannot be copied
auto ptr = std::make_unique<int>(0);

auto callback

[max, ptr

std: :move(ptr)](auto&& s) mutable { // moving into lambda (C++14)
if (s > max) {

++(*ptr);

std::cout << *ptr << '\n';

using s_type = decltype(s); // rvalue maybe

max = std::forward<s_type>(s); // forwarding an auto&& param

}

return max;

};

Code: https://godbolt.org/z/YgxoY 3055

To Move or Not to Move @ Amir Kirsh

51

https://godbolt.org/z/YqxoY3o55

Thank you!

volid conclude(auto&& greetings) {

while(still time() && have_questions()) {
ask();

}

greetings();

}

conclude([]{ std::cout << "Thank you!"; });

// Comments, feedback: kirshamir@gmail.com
// let me help you accelerate you builds: amir.kirsh@incredibuild.com

To Move or Not to Move @ Amir Kirsh

52

mailto:kirshamir@gmail.com
mailto:amir.kirsh@incredibuild.com

