
Daniel Frey, 2024-06-05

Mistakes were made…

WTF-8

Language and Computers

Words are Hard

• Fun walk-around in history, both ancient and modern

• This talk simplifies and skips over a lot of stuff

• Language and how it is constructed is super interesting!

• Relevant for computer systems, hence for computer scientists, engineers, …

• Not meant to point fingers and bash people, just understand how history unfolds

• Enjoy the rabbit hole by googling it yourself after the talk

Babylon

Let’s talk about it…

Spoken Language

• Before written language, there was spoken language (Duh!)

• This is where things went south already (or north?)

• Large distances, separated communities

• Dialects became languages

• Having no internet and smartphones means no long distance communication
(fun fact: Yodeling was long distance communication in the mountains)

• So… no problem!

Hello ًمرحبا नम#े привет こんにちは Γειά σου 你好 안녕하세요
Written Language

• Written languages were invented multiple times, independently

• First recorded language was Sumerian, ca. 3400 B.C.
(fast forward: Arabic, English, Elvish, Klingon… there are tons of languages out there)

• (Modern) writing systems are build upon alphabets or syllabaries

• Graphemes are the smallest functional unit of a writing system

• Graphemes are abstract, similar to the notion of a character in a computer system

• Glyphs are a specific shape, design, or representation of a character (a, a, a, a, a, a)

Babylon 2.0

Thomas Watson, president of IBM, 1943

“I think there is a world
market for maybe five
computers”

The History of Computers

• Previous title slide showed ENIAC, constructed 1943-45
(Electronic Numerical Integrator and Computer)

• 30 tons, 200 kW, 18.000+ vacuum tubes, …

• World’s first Turing-complete electronic computer

• Other honorable mentions are:

• Zuse Z3, 1938-41, first working electromechanical computer, kinda Turing-complete

• Colossus, 1943-44, broke Enigma, first electronic computer, not Turing-complete

The best era, period.

The 8-bit Era

• Transistors: Proposed 1926, first working device 1947, MOSFETs in 1959

• First integrated circuits (ICs), first microprocessors (4004 in 1970, 6502 in 1975)

• Computers weren’t limited to governments and big companies anymore

• Started the Home Computer Revolution (aka the 8-bit era)

• Normal people had access to computers

• Next milestone: Connect them up!

Networking is not a Soft Skill

Connecting the World

• ARPANET created by DARPA in 1966-71

• First TCP/IP based wide area network, TCP/IP v4 in 1983, connected to universities in 1986

• This became the Internet, the original ARPANET was formally decommissioned in 1990

• ASCII first standardised in 1963

• Uses 7 bits, limited to 127 characters

• 8-bit variants added later, but which one do you want to use?

ISO-8859-1 ≠ ISO-8859-15

Codepages

• ASCII is nice for the Latin alphabet, but only modern English uses a pure Latin alphabet

• Many other languages add diacritics (ä, å, á, ç, …) and/or digraphs (ß, æ, …)

• What about other alphabets, e.g. Greek, Cyrillic, Chinese, you-name-it…?

• Codepages were a band-aid, not a solution

• We need something better

Solve all you problems, forever.

Finally… Unicode!

• Work began ca. 1987 at Xerox, the Unicode Consortium was incorporated in January 1991

• First Unicode standard was published in October 1991

• Initially code points were limited to 16 bits

• Unicode 2.0 was published on 1996

• Introduces a surrogate character mechanism to encode over a million code points

• Code points need to be mapped to the real world… fun with encodings!

Early Adopters

Early Adopters

• Early adopters tended to use UCS-2
(the fixed-length two-byte obsolete precursor to UTF-16)

• Windows NT, July 1993 adopted UCS-2/UTF-16

• Java, 1994 also used UCS-2/UTF-16

• Oracle, May 1995 used UCS-2

• Unix-like systems adopted UTF-8

• The internet uses UTF-8 almost exclusively (97.9% as of April 2023)

Encodings

Simple, right?

UTF-16

• Ignore endianness (ain’t nobody got time for that)

• Neither will we discuss UTF-32 (ain’t nobody got space for that)

• Surrogate character mechanism to enhance the available code points beyond 16 bit

• 0x0000-0xCFFF and 0xE000-0xFFFF directly represents a code point

• 0xD800-0xDBFF is a high surrogate, 0xDC00-0xDFFF is a low surrogate

• Must occur as surrogate pairs, one high surrogate followed by one low surrogate

Simple, right?… RIGHT?

UTF-16

• High surrogate (0xD800-0xDBFF) -> 0b110110YYYYYYYYYY

• Low surrogate (0xDC00-0xDFFF) -> 0b110111XXXXXXXXXX

• Map to a code point in the 0x10000-0x10FFFF range

• Code point = 0bYYYYYYYYYYXXXXXXXXXX + 0x10000

• Handling of surrogate pairs is often not thoroughly tested

• This leads to persistent bugs and potential security holes, e.g. CVE-2008-2938, -2012-2135

Who uses UTF-16 anyways?

UTF-8

• 0b0XXXXXXX
One byte, compatible with ASCII, encodes code points 0x00-0x7F

• 0b110XXXXX 0b10XXXXXX
Two bytes, encodes code points 0x80-0x7FF

• 0b1110XXXX 0b10XXXXXX 0b10XXXXXX
Three bytes, encodes code points 0x800-0xFFFF

• 0b11110XXX 0b10XXXXXX 0b10XXXXXX 0b10XXXXXX
Four bytes, encodes code points 0x10000-0x10FFFF

UTF-8 rulez!

UTF-8

• Not all byte sequences are valid UTF-8 strings

• You must use the shortest possible UTF-8 encoding of a code point, no overlong encodings

• Example: Code point 32 (space) could be encoded as 0b11000000 0b10100000, but also
as 0b00100000. The latter is shorter, therefore the only correct UTF-8 encoding

• UTF-8 strings do not contain any reserved surrogate code points (0xD800-0xDFFF)

Mistakes
Mistakes everywhere!

Compatibility Encoding Scheme for UTF-16: 8-Bit

CESU-8

• “Popular” with early adopters, especially Oracle

• Encodes surrogate pairs (from UCS-2/UTF-16) to UTF-8 separately

• Generates a three byte UTF-8 encoding for the high surrogate, and…

• …generates a three byte UTF-8 encoding for the low surrogate…

• …instead of a four byte UTF-8 encoding of the code-point

• Leads to 0b11101101 0b1010XXXX 0b10XXXXXX 0b11101101 0b1011XXXX 0b10XXXXXX
instead of 0b11110XXX 0b10XXXXXX 0b10XXXXXX 0b10XXXXXX

Compatibility Encoding Scheme for UTF-16: 8-Bit

CESU-8

• Actually a Unicode standard now

• Decode a UTF-8 code point, if it is a high surrogate:

• Decode the next UTF-8 code point

• Check it is a low surrogate, combine both into the actual code point

• Supporting CESU-8 in HTML documents is prohibited by the W3C, as it would present a
cross-site scripting vulnerability!

Modified UTF-8

MUTF-8

• Originated in the Java programming language

• Modified UTF-8 is an “enhancement” of CESU-8, adding a special overlong encoding of the
NUL character (U+0000), represented as a two-byte sequence: 0xC0 0x80

• A Modified UTF-8 string therefore never contain any actual null bytes, but can contain all
Unicode code points including U+0000, which allows such strings (with a null byte
appended) to be processed by traditional null-terminated string functions

• All known MUTF-8 implementations are also CESU-8 (but not vice versa)

Wobbly Transformation Format − 8-bit

WTF-8

• Encodes surrogate code points even if they are not in a pair

• Must only be used internally and converted to a Unicode encoding at a system’s boundary
before being emitted

• Except the WTF-8 specification doesn’t really say how the conversion is done

• Why was WTF-8 even created? What is the use case?

Wobbly Transformation Format − 8-bit

WTF-8

• Why? That’s why:

• In ECMAScript (aka JavaScript), a String value is defined as a sequence of 16-bit integers
that usually represent UTF-16 text but may or may not be well-formed

• Windows applications normally use UTF-16, but the file system treats paths and file names
as an opaque sequence of WCHARs (16-bit code units)

• We say that strings in these systems are encoded in potentially ill-formed UTF-16 or WTF-16

Thank you!
Questions?

